The action of the Steenrod algebra on Tate cohomology
نویسندگان
چکیده
منابع مشابه
The Cohomology Algebra of a Subalgebra of the Steenrod Algebra
We compute the cohomology algebra of P (1), the subalgebra of the Steenrod algebra generated by P 1 and P p. This completes a partial result given by Arunas Liulevicius in 1962 and provides explicit representatives in the cobar construction for all but one of the algebra generators.
متن کاملNilpotence and Torsion in the Cohomology of the Steenrod Algebra
In this paper we prove the existence of global nilpotence and global torsion bounds for the cohomology of any finite Hopf subalgebra of the Steenrod algebra for the prime 2. An explicit formula for computing such bounds is then obtained. This is used to compute bounds for H* (sán ) fer n < 6 .
متن کاملOn the X basis in the Steenrod algebra
Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra, where $p$ is an odd prime, and let $mathcal{A}$ be the subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers. We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$.
متن کاملInvariant elements in the dual Steenrod algebra
In this paper, we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$, where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1993
ISSN: 0022-4049
DOI: 10.1016/0022-4049(93)90168-s